ⓘ Free online encyclopedia. Did you know? page 58



                                               

Fibonoriál

Přesná definice muže vypadat takto: n! F = ∏ k = 1 n F k {\displaystyle n!_{F}=\prod _{k=1}^{n}F_{k}} kde F k je k-té Fibonacciho číslo. Alternativní definice: n! F = F n ⋅ F n − 1 ⋅ … ⋅ F 1 {\displaystyle n!_{F}=F_{n}\cdot F_{n-1}\cdot \ldots \c ...

                                               

Hexakosioihexekontahexafobie

Hexakosioihexekontahexafobie je chorobný strach z čísla 666. Toto číslo se vyskytuje v Apokalypse: Protože v hebrejštině i v řečtině se jako číslice užívala písmena, bylo snadné např. něčí jméno "sečíst" ; zde se nejspíš jedná o Nerona. Vznik tét ...

                                               

Ilegální číslo

Ilegální číslo je číslo, které představuje informaci zakázanou zveřejňovat nebo distribuovat. Každá informace se dá zapsat jako číslo, takže jestliže je ilegální distribuovat nějakou informaci, muže být ilegální i šíření čísla, které tuto informa ...

                                               

Ilegální prvočíslo

Ilegální prvočíslo je prvočíslo, které představuje informaci zakázanou vlastnit nebo distribuovat. Jedno z prvních ilegálních prvočísel bylo objeveno v roce 2001. Při zvláštním použití popisuje počítačový program, který obchází schéma správy digi ...

                                               

Iracionální číslo

V matematice je iracionální číslo každé reálné číslo, které není racionálním číslem, tedy takové číslo, které nelze vyjádřit jako zlomek, tedy podíl dvou celých čísel a / b, kde a b jsou celá čísla a b není nula. Iracionální číslo má neukončený a ...

                                               

Jedničkové číslo

Jedničkové číslo je číslo, jehož zápis v desítkové soustavě je složen jen z opakování číslice 1. Jedná se tedy o čísla … R 3 = 111 {\displaystyle R_{3}=111} R 2 = 11 {\displaystyle R_{2}=11} R 1 = 1 {\displaystyle R_{1}=1} Obecněji je možné defin ...

                                               

Moivreova věta

Moivreova věta říká, že pro libovolné komplexní číslo x a libovolné celé číslo n platí: cos ⁡ x + i sin ⁡ x n = cos ⁡ n x + i sin ⁡ n x. {\displaystyle \cos x+i\sin x^{n}=\cosnx+i\sinnx.\,} kde i je imaginární jednotka. Tento vztah je duležitý, n ...

                                               

Motzkinovo číslo

Motzkinovo číslo se dá v matematice definovat např. jako počet všech možných ruzných zpusobu nakreslení neprotínajících se tětiv mezi n body na kružnici. Je pojmenováno po americkém matematikovi Theodoru Motzkinovi. Motzkinovo číslo má mnoho ruzn ...

                                               

Nadreálné číslo

Nadreálné číslo je společným zúplněním pojmu reálného, ordinálního a hyperreálného čísla. Z čistě matematického hlediska je každé nadreálné číslo uspořádaná dvojice množin nadreálných čísel, která nadto splňuje jisté podmínky.

                                               

Nekonečno

Nekonečno je abstraktní pojem, který označuje kvantitu něčeho, co je tak veliké, že nemá konec, typicky se nedá spočítat, změřit, a pokud ano, tak je větší než každé konečné číslo. Přesto se řadí mezi čísla. Objekt, který je tak veliký, že má atr ...

                                               

Numeronymum

Numeronymum je slovo složené z písmen i čísel. Nejčastěji je číslo formou zkratky, například protože použitá číslovka zní jako část slova: "z5", 3nec, "w8", atd. Další možností je, že číslo určuje počet znaku mezi prvním a posledním znakem slova: ...

                                               

Poloprvočíslo

Poloprvočíslo je přirozené číslo, které je součinem právě dvou prvočísel. Poloprvočísla jsou vždy složená čísla. Prvním poloprvočíslem je 4, které je rovno 2×2. Poloprvočísel je nekonečně mnoho.

                                               

Polynom

                                               

Prvočíslo

Prvočíslo je přirozené číslo větší než 1, které je dělitelné jen dvěma děliteli: jedničkou a samo sebou. Jednička není prvočíslo, neboť nemá dva ruzné dělitele. Přirozená čísla větší než jedna, která nejsou prvočísly, se nazývají složená čísla. P ...

                                               

Přirozené číslo

Přirozeným číslem se v matematice obvykle rozumí nezáporné celé číslo, které lze použít k vyjádření mohutnosti množiny, resp. počtu nějakých předmětu. Zejména ve starší literatuře se nula mezi přirozená čísla nepočítala, což vychází z použití při ...

                                               

Skewesovo číslo

První a druhé Skewesovo číslo jsou jedněmi z největších čísel, která byla použita v matematice. Jsou pojmenována po jihoafrickém matematikovi Stanleym Skewesovi, který je poprvé použil. Obě Skewesova čísla byla ve své době nejmenšími známými horn ...

                                               

Triskaidekafobie

Triskaidekafobie je fobie označující chorobný strach z čísla 13. Postižení se obávají jakékoliv přítomnosti čísla třináct – 13. den v měsíci je pro ně nešťastný, nemohou bydlet v hotelovém pokoji s tímto číslem apod. Strach a pověra ze třináctky ...

                                               

Vědecký zápis čísel

Vědecký zápis čísel nebo vědecká notace je zpusob reprezentace čísel na kalkulačkách nebo čísel v pohyblivé řádové čárce na počítačích. Číslo se zapisuje ve tvaru a E b např. 1.23E25, nebo 7.5E-12, kde a je desetinné číslo nazývané mantisa, b je ...

                                               

Velká čísla

                                               

Devět kapitol matematického umění

Matematika v devíti kapitolách neboli Devět kapitol matematického umění je čínská matematická kniha tvořená v 10.–2. století před naším letopočtem a dokončená v 2. století našeho letopočtu. Jedná se o jeden z nejstarších dochovaných čínských mate ...

                                               

Eukleidovy Základy

Eukleidovy Základy nebo pouze Základy, jejichž autorem je Eukleidés z Alexandrie, byly až do druhé poloviny 19. století po bibli nejvíce rozšířeným dílem světového písemnictví. Jeho dílo nám podává přehled o matematických znalostech Řeku ke konci ...

                                               

Alexandr Fridman

Alexandr Alexandrovič Fridman byl ruský matematik, geofyzik a meteorolog, jeden z tvurcu teorie rozpínání vesmíru.

                                               

Kost z Ishanga

Kost z Ishanga je kostěný nástroj a potenciální matematický předmět datovaný do doby mladého paleolitu. Je to tmavě hnědá stehenní kost patřící paviánovi. Na jejím konci se nachází ostrý kus křemene, který pravděpodobně umožňoval efektivnější ryt ...

                                               

Kvadratura (matematika)

Kvadratura je historický matematický termín, který znamená výpočet plošného obsahu určitého geometrického obrazce. Tento pojem se v současnosti stále používá při řešení diferenciálních rovnic, kde "řešení rovnice kvadraturou" znamená vyjádření je ...

                                               

Kvadratura kruhu

Kvadratura kruhu je úloha sestrojit k danému kruhu čtverec o stejném obsahu, a to pouze pomocí pravítka a kružítka. Je to jeden ze tří nejslavnějších antických konstrukčních problému. Tyto problémy byly formulovány již v 5. století př. n. l. a od ...

                                               

Naivní teorie množin

Jako naivní teorie množin je dnes označována puvodní teorie množin vytvořená Georgem Cantorem v druhé polovině 19. století. Název naivní je používán pro zduraznění protikladu mezi Cantorovým intuitivním pojetím pojmu množina a dnes používanými ax ...

                                               

Pythagoreismus

Pythagoreismus je filosofická esoterní škola a významná tradice západního myšlení, kterou založil kolem roku 530 př. n. l. předsókratovský filosof Pythagoras. Vychází z esoterických úvah o významu čísel. Pythagorovi stoupenci a následovníci ovšem ...

                                               

Tetraktys

Tetraktys je "magický" soubor či posloupnost čísel 1, 2, 3, 4, který byl zaveden pýthagorejci. Ti využívali tetraktys k vybudování a vysvětlení celého světa. Jejich součet dává magickou desítku, která u pýthagorejcu značila dokonalost boží. Z tet ...

                                               

Trisekce úhlu

Trisekce úhlu je jeden ze tří nejslavnějších antických konstrukčních problému. Tyto úlohy byly formulovány již v 5. století př. n. l. a odolávaly po dlouhá staletí všem pokusum o vyřešení, než bylo v 19. století dokázáno, že jsou neřešitelné.

                                               

Tři klasické problémy antické matematiky

Tři klasické problémy antické matematiky je trojice problému vymyšlených starořeckými geometry. Řešení každého z těchto problému je omezeno na tzv. euklidovskou konstrukci, tj. konstrukci pouze za pomoci pravítka a kružítka. Řešení těchto problém ...

                                               

Zdvojení krychle

Zdvojení krychle je jeden ze tří nejslavnějších antických konstrukčních problému. Tyto úlohy byly formulovány již v 5. století př. n. l. a odolávaly po dlouhá staletí všem pokusum o vyřešení, než bylo v 19. století dokázáno, že jsou neřešitelné.

                                               

Elementární matematika

Elementární matematika obsahuje matematické obory často vyučované na základní nebo střední škole. Nejzákladnější obory v elementární matematice jsou aritmetika a geometrie. V posledních desetiletích 20. století se začala věnovat větší pozornost o ...

                                               

Číslice cyrilice

Číslice cyrilice je číselná soustava odvozená od cyrilice, která vznikla v První bulharské říši na konci 10. století. Soustava se používala v První bulharské říši a u jižních a východních Slovanu. Tento systém byl používán v Rusku nejpozději až d ...

                                               

Doplnění na čtverec

Doplnění na čtverec je postup pro transformaci algebraických výrazu, ve kterých se vyskytují členy s proměnnou v první i druhé mocnině. Doplněním na čtverec se výraz upraví tak, že v něm vystupuje pouze kvadrát dvojčlenu obsahujícího tuto proměnn ...

                                               

Hindsko-arabská číselná soustava

Hindsko-arabská číselná soustava nebo také hindská číselná soustava, poziční desítková číselná soustava, je celosvětově nejrozšířenější systém pro symbolickou reprezentaci čísel. Soustava byla vynalezena indickými matematiky mezi 1. a 4. stoletím ...

                                               

Indické číslice

Indické číslice jsou symboly reprezentující číslice v Indii. Tyto číslice se obvykle používají v kontextu desítkové hindsko-arabské číselné soustavy a jsou odlišné, i když spřízněné, od arabských číslic.

                                               

Počátek souřadnic

Počátek souřadnicového systému neboli počátek souřadnic je v matematice speciální bod, obvykle označovaný písmenem O, používaný jako referenční bod pro geometrii okolního prostoru. Ve fyzikálních problémech na volbě počátku souřadnicového systému ...

                                               

Východoarabské číslice

Východoarabské číslice jsou symboly použité k reprezentaci hindsko-arabské číselné soustavy ve spojení s arabskou abecedou v zemích Mašreku, na Arabském poloostrově a ve variantách v dalších asijských zemích, které používají perské písmo.

                                               

Filosofie matematiky

Filosofie matematiky je odvětví filosofie zkoumající filosofické předpoklady, nálezy a dusledky matematiky. Cílem filozofie matematiky je definovat základní podstatu a metodologii matematiky a rozumět roli matematiky v životě lidí. Logická podsta ...

                                               

Analytické řešení

V matematice se analytickým řešením rozumí takový postup získání výsledku, který připouští využití pouze známých vztahu a ekvivalentních úprav matematických konstrukcí. Je-li analytický postup obtížný např. z duvodu složitosti některého relevantn ...

                                               

Axiom

Matematické teorie lze založit na soustavách axiomu. Tuto metodu vytváření matematických teorií označujeme jako axiomatickou a takto vytvořenou teorii za teorii formální. Pro prokazování tvrzení ve formálních teoriích slouží tzv. formální dukaz. ...

                                               

Filosofie statistiky

Filosofie statistiky je odvětví filosofie vědy, které se věnuje studiu významu, ospravedlnění, potenciálních možností využití a zneužití statistiky, její metodologie a etických a epistemologických problému spojených s úvahami o volbě a interpreta ...

                                               

Gottlob Frege

Friedrich Ludwig Gottlob Frege byl německý matematik, logik a filosof, dlouholetý profesor univerzity v Jeně. Frege kritizoval psychologismus, tj. názor, že matematické objekty mají psychologický puvod a že logika je "věda o správném myšlení". Je ...

                                               

Invariance

Invariance je označení pro situaci, v níž jsou jisté objekty neměnné při určitých událostech. Přesným matematickým vyjádřením invariance je pojem invariantu. Příkladem invariance je situace, kdy je dán systém veličin, které na sobě nějakým zpusob ...

                                               

Invariant (matematika)

Pro ekvivalenci na množině A je invariant funkcí f: A → B {\displaystyle f\colon A\to B}, která je konstantní na třídách této ekvivalence, tedy není závislá na výběru prvku ze třídy.

                                               

Kvantita

Kvantita či množství je údaj, odpověď na otázku "kolik?", "jak mnoho?" – podobně jako kvalita odpovídá na otázku "jaký?" V jazyce se vyjadřuje příslovcem, číslovkou, případně symbolem čísla. Kvantity vznikají odhadem, počítáním a nejčastěji měřen ...

                                               

Matematická věta

V matematice se jako věta označuje duležité netriviální a dostatečně obecné tvrzení neboli výrok. Aby se však takové tvrzení dalo považovat za větu, je třeba podat jeho dukaz, to znamená logickým postupem ho odvodit z definic, axiomu a z již dřív ...

                                               

Matematický dukaz

V matematice je dukaz demonstrace nutné pravdivosti nějakého tvrzení za určitých předpokladu. Matematický dukaz musí být založen výhradně na nezpochybnitelných pravidlech rozumu, nepřipouští žádný postup založený na názoru, experimentu, intuici č ...

                                               

Proměnná

Proměnná je v matematice a programování zpusob symbolické reprezentace objektu, který umožňuje zcela abstraktní manipulaci s nimi. Proměnná zastupuje libovolný myslitelný objekt z dané třídy. Manipulace s proměnnými a vztahy pro ně platné mohou b ...

                                               

Rovnost (matematika)

Rovnost v matematice je relace neboli vztah, vyjadřující totožnost objektu, které jsou v tomto vztahu. Každý objekt je roven jen sám sobě. Žádné dva ruzné objekty si nemohou být rovny.

Free and no ads
no need to download or install

Pino - logical board game which is based on tactics and strategy. In general this is a remix of chess, checkers and corners. The game develops imagination, concentration, teaches how to solve tasks, plan their own actions and of course to think logically. It does not matter how much pieces you have, the main thing is how they are placement!

online intellectual game →